
CS 6832: Quantum Cryptography August 26, 2025

Lecture 1: (Private-key) Quantum Money
Instructor: Nick Spooner Scribe: Lucas Sandleris

1 Intro to the class

Why do we study Quantum Computing?

1. Quantum information can circumvent classical impossibility.

• Oblivious Transfer achievable from One-Way Function.

• Quantum key distribution.

• Quantum Money

2. Quantum Computers impact on Classical Crypto

• Quantum Computers break some hardness assumptions (like factoring).

• Quantum computers invalidate some security proofs.

3. It’s weird

• Quantum Crypto could be independent of classical complexity!

– Unlike Classical Crypto, might still exist even it P=NP.

1.1 Course split into three parts

1. Unconditional Quantum Computing (no CS, just from physical phenomena).

2. Post-Quantum Cryptography

3. "Fully Quantum" (Quantum cryptography with computational assumptions)

2 Private-key Quantum Money

Private-key Quantum Money is a cryptographic protocol that precedes most classical cryptography. It con-
sists of the following components:

• Gen
(
1λ
)
−→ k, |$k⟩.

• Ver (k, |ψ⟩) −→ yes/no.
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We call λ the security parameter, as we will see that the security of the protocol will depend on λ (or, really,
we will measure it allowing a dependence on λ).
The protocol private key is k ∈ {0, 1}λ, and its associated banknote is the quantum state |$k⟩, which are
outputs to the Generation algorithm. We call a string-state pair valid if the verifier Ver outputs yes when
having the pair as input. Otherwise we say it is invalid.

We say the protocol is correct if, for all λ, Pr
[
Ver

(
Gen

(
1λ
))

= yes
]
= 1.

Besides the protocol being correct, we want it to satisfy some notion of security. This is, we want a (poly-
nomial) adversary to not be able to "replicate" the banknotes without the key, as in the following diagram:

And we say that the protocol is secure if, for all polynomial-time algorithm A and for all λ,

Pr [b1 = b2 = yes] ≤ 2−Ω(λ).

Or, formally:

Pr
[
Gen(1λ)→ k, |$k⟩ ; A (|$k⟩)→ |ψ1⟩ , |ψ2⟩ ; Ver (k |ψi⟩)→ bi; b1 = b2 = yes

]
≤ 2−Ω(λ).

One important observation is that, if we aimed to do this classically by replacing |$k⟩ with a string, then we
could just have A return two copies of the string.
To justify why such a protocol is however possible making use of quantum states, we will look at the No
Cloning Theorem.
Before doing so, we introduce some definitions:

Definition 2.1. An n-qubit quantum state is a unit vector |ψ⟩ ∈ C2n .

Definition 2.2. If |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2 are quantum states, the combined system is represented using
the (bilinear and norm-preserving) Kronecker tensor product:

|ψ1⟩ ⊗ |ψ2⟩ = |ψ1⟩ |ψ2⟩ ∈ H1 ⊗H2

Fact 2.3. Any quantum operation can be modeled as follows:

|ψ⟩ −−−−→
adjoin

|ψ⟩ |e⟩ −→
U
U |ψ⟩ |e⟩ −−−−→

discard
ρ

where U is a unitary operator (this is, U†U = UU† = I).

Theorem 2.4 (No Cloning Theorem). There is no quantum operator Φ such that Φ |ψ⟩ = |ψ⟩ |ψ⟩ for every
quantum state |ψ⟩.

Proof. Suppose that there exist U , |e⟩ such that, for all |ψ⟩ there is |ϕ⟩ such that U |ψ⟩ |e⟩ = |ψ⟩ |ψ⟩ |ϕ⟩.
Then, setting ψ = 0 and ψ = 1 yields

U |0⟩ |e⟩ = |0⟩ |0⟩ |ϕ0⟩ and U |1⟩ |e⟩ = |1⟩ |1⟩ |ϕ1⟩
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However, now set ψ = +, so that |ψ⟩ = |+⟩ = 1√
2
(|0⟩+ |1⟩). This yields

U |+⟩ |e⟩ = |+⟩ |+⟩ |ϕ+⟩ =
1

2
(|0⟩ |0⟩+ |0⟩ |1⟩+ |1⟩ |0⟩+ |1⟩ |1⟩) |ϕ+⟩

But we also have that

U |+⟩ |e⟩ = 1√
2
(U |0⟩ |e⟩+ U |1⟩ |e⟩) = 1√

2
(|0⟩ |0⟩ |ϕ0⟩+ |1⟩ |1⟩ |ϕ1⟩)

This is a contradiction, as the equality

1

2
(|0⟩ |0⟩+ |0⟩ |1⟩+ |1⟩ |0⟩+ |1⟩ |1⟩) |ϕ+⟩ =

1√
2
(|0⟩ |0⟩ |ϕ0⟩+ |1⟩ |1⟩ |ϕ1⟩)

does not hold for any |ϕ0⟩, |ϕ1⟩, |ϕ+⟩, concluding the proof.

Observation 2.5. This proof actually proves an even stronger fact, which is that no operator can clone |0⟩,
|1⟩ and |+⟩ simultaneously. This gives rise to the following idea:

Idea 2.6. Use |0⟩, |1⟩, |+⟩, |−⟩ as banknotes in the Quantum Money Protocol.
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CS 6832: Quantum Cryptography Aug 28, 2025

Lecture 2: Quantum Money (Continued)
Instructor: Nick Spooner Scribe: Santiago Lai

3 Wiesner’s Quantum Money Scheme

Before introducing Wisner’s quantum money scheme, there are some definitions to give.

Definition 3.1. The Hadamard operator H ∈ C2×2 is defined such that |+⟩ := H |0⟩ = |0⟩+|1⟩√
2

, and

|−⟩ := H |1⟩ = |0⟩−|1⟩√
2

.

Definition 3.2. A (simple) measurement is defined as follows. Given a Hilbert space H = Cd and an
orthonormal basis M = {|1⟩ , |2⟩ , . . . , |d⟩} for H, a measurement is given by the following process:

|ψ⟩ M p.m. state

For a state |ψ⟩ =
∑d

i=1 αi |i⟩, the measurement satisfies that Pr[outcome is i] = |αi|2 = | ⟨i|ψ⟩ |2. The
post-measurement state, or p.m. state, collapses to the outcome |i⟩ correspondingly.

Example 3.3. A measurement is often done in 2 important basis: the computational basis {|0⟩ , |1⟩}, and

the Hadamard basis {|+⟩ , |−⟩}. In the first case we denote the measurement by , and in the second

case we denote the measurement by
H

.

With the definition of measurement, we are ready to introduce Wiesner’s scheme.

Definition 3.4. Wisner’s quantum money scheme consists of the following Gen and Ver algorithms.

• Gen(1λ): Choose θ ← {0, 1}λ, k ← {0, 1}λ, which together form the key. The banknote is defined as
|$θk⟩ = |$

θ1
k1
⟩ ⊗ |$θ2k2

⟩ ⊗ · · · ⊗ |$θλkλ
⟩, where |$ab ⟩ = Ha |b⟩.

• Ver((θ, k), |ψ⟩): For each i ∈ [λ], if θi = 0 then measure the i-th qubit in the computational basis;
otherwise measure it in the Hadamard basis. Let the result be bi. Accept if bi = ki for all i.

Recall the definition for correctness and unclonability from last lecture. It is easy to see that the scheme is
correct, since if the banknote is valid then we always measure in the correct basis. Again, the unclonability
is due to the No-Cloning theorem we proved. However, it would still be useful to think of attacks on this
scheme. We can immediately come up with the following attack:
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Example 3.5. Consider the case where λ = 1, since the attack can easily be generalized to any λ by applying
it bitwise. We measure the state in the computational basis to get |b⟩, and simply send |b⟩ |b⟩. If θ = 0 then
the attack easily successes. If θ = 1, then Pr[b = 0] = Pr[b = 1] = 1, and in that case, the success probability
is always 1/4. Thus the overall success probability is 5/8 for λ = 1, and (5/8)λ for any arbitrary λ.

This is far from the optimal attack one can get. In fact, we have the following result:

Theorem 3.6 (Molina, Vidick, Watrous 12’). The optimal attack to Wiesner’s quantum money scheme has
a success probability of (3/4)λ.

We will show that no adversary succeeds with probability larger than (cos2(π/8))λ later in the lecture. Before
that, we move to another important definition in quantum computing.

4 Entanglement, and the BB84 Monogamy Game

Definition 4.1. Given two Hilbert spaces HA = span(|a1⟩ , . . . , |am⟩), HB = span(|b1⟩ , . . . , |bn⟩), their joint
Hilbert space is HAB = HA ⊗HB = span(|ai⟩ ⊗ |bj⟩)j∈[1,n]

i∈[1,m]. For a state |ψ⟩ ∈ HAB , it is called separable if
there exists |a⟩ ∈ HA, |b⟩ ∈ HB such that |ψ⟩ = |a⟩ ⊗ |b⟩. Otherwise, it is called an entangled state.

Example 4.2. Let HA = HB = C2. Then |00⟩ , |11⟩ are separable states in HAB , but the EPR pair
|Φ+⟩ := |00⟩+|11⟩√

2
is an entangled state.

In fact, entanglement is monogamous in the sense that if HA,HB are very entangled, then neither HA nor
HB can be very entangled with a third Hilbert space HC . The following game will be useful in showing this
result, but we leave details to the next lecture.

Definition 4.3 (“BB84” monogamy game). The 3-player BB84 monogamy game goes as follows. Player A,
B, C are each given a part of a state |ψ⟩. Player A will sample θ ← {0, 1}λ, and perform measurement Mθ

to get result x, where the measurement is bitwise and Mθi is in computational basis if θi = 0, or Hadamard
basis if θi = 1. Player A then passes θ to B and C, who are allowed to perform some other operations to get
y and z. They win the game if x = y = z.

|ψ⟩

A B C

Mθ

x y z

θ

θ

θ ← {0, 1}λ

Figure 1: 3-player BB84 monogamy game

We also have a 2-player version, which is described by the following figure.
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|ψ⟩

A B

Mθ

x y

θ

θ ← {0, 1}λ

Figure 2: 2-player version

In fact, there is a winning strategy for the 2-player version. However, there is no such strategy for the
3-player BB84 monogamy game. We will see this in the next lecture.
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CS 6832: Quantum Cryptography Sep 02, 2025

Lecture 3: BB84 Monogamy Game
Instructor: Nick Spooner Scribe: Santiago Lai

5 BB84 Monogamy Game

Recall the structure of BB84 monogamy game from last lecture:

Definition 5.1. The 3-player and 2-player version of the BB84 monogamy game goes as shown in the figure
below. Refer to the last lecture for more details.

|ψ⟩

A B C

Mθ

x y z

θ

θ

θ ← {0, 1}λ

Figure 3: 3-player BB84 monogamy game

|ψ⟩

A B

Mθ

x y

θ

θ ← {0, 1}λ

Figure 4: 2-player version

We start with an useful property of the EPR pair |Φ+⟩, then show a winning strategy for the 2-player game.

Observation 5.2 (Ricochet property). For any operator A, we have that (A⊗ I) |Φ+⟩ = (I ⊗A⊤) |Φ+⟩.

Example 5.3. Let |ψ⟩ = |Φ+⟩ = |00⟩+|11⟩√
2

. Both players A,B will measure in the same basis Mθ where
θ ← {0, 1}. Let the results of measurements be b1, b2, respectively. Using a case analysis:

• If θ = 0, the measurement is done in the computational basis. Then Pr[b1b2 = x1x2] = | ⟨x1x2|Φ+⟩ |2 =
0 if x1 ̸= x2, or 1

2 if x1 = x2. Thus we have x1 = x2.

• If θ = 1, first note that |Φ+⟩ = (I ⊗HHT ) |Φ+⟩ = (H ⊗H) |Φ+⟩ = |++⟩+|−−⟩√
2

. Since the measurement
is done in the Hadamard basis, by a similar analysis, we also have that x1 = x2.

Therefore, this is a wining strategy for the 2-player game.

The converse of above is also true, that is, if the strategy wins with probability 1, then |ψ⟩ = |Φ+⟩. In
particular, this implies that for the 3-player game, Pr[x = y] = 1 implies that |ψ⟩ = |Φ+⟩AB ⊗ |c⟩C , which
is a separable state. Thus there is no strategy that achieves x = z with probability 1.

The optimal attack for the BB84 monogamy game is described by the following theorem.

Theorem 5.4 (TFKW13). The optimal strategy for the 3-player game wins w.p. at most (cos2 π
8 )

λ.
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Notice that we have seen this number before; it is exactly the wining probability for the Wiesner quantum
money scheme in the last lecture! Indeed, the BB84 monogamy game and the Wiesner quantum money
scheme is related. To see it, we consider an alternative way to generate the keys and the banknote.

• Gen′(1λ): Prepare |Φ+⟩ = 1√
2λ

⊗λ
i=1

(
|0⟩Ai

|0⟩Bi
+ |1⟩Ai

|1⟩Bi

)
. Sample θ ← {0, 1}λ, and for each

i ∈ [1, λ] measure Ai with Mθ. Output ((θ, k), B).

Claim 5.5. The generation algorithm Gen from last lecture is equivalent to Gen′.

Before proving the claim, we need to define “partial” measurement.

Definition 5.6. A partial measurement is done on a joint system A,B, in the following sense:

|ψ⟩AB

MA

For |ψ⟩ =
∑

i,j αi,j |i⟩A |j⟩B where {|i⟩}, {|j⟩} forms a basis for A,B, the measurement satisfies that

Pr[outcome is i] =
∑

j |αi,j |2, and the post measurement state is |i⟩A ⊗
∑

j αi,j |j⟩∑
j |αi,j |2

Proof of Claim 5.5. Consider the case λ = 1, as the proof easily generalizes bitwise. For θ = 0, the circuit is

k
|Φ+⟩

Note that Pr[k = 0] = Pr[k = 1] = 1
2 . When k = 0, the p.m. state is |00⟩, and when k = 1 the p.m. state is

|11⟩. This is exactly the behavior described by Gen. The analysis for θ = 1 is similar.

With this alternative generation algorithm Gen′, we have the following result.

Proposition 5.7. The quantum money scheme reduces to the BB84 monogamy game.

Proof. With the alternative generation method, an attack on the quantum money scheme is equivalent to
finding an adversary A such that in the following circuit

k

y

z

|Φ+⟩
Mθ

A
Mθ

Mθ

the output satisfies k = y = z. This is almost the BB84 monogamy game, except that we did not choose the
state at start. To fix this, note that the circuit is equivalent to
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k

y

z

|Φ+⟩
Mθ

A
Mθ

Mθ

Thus we can just set the initial state |ψ⟩ to (IA ⊗AB) |Φ+⟩AB .

Finally, we prove Theorem 5.4.

Proof of Theorem 5.4. Note that the monogamy game is equivalent to finding Mθ = {|xθ⟩ : x ∈ {0, 1}λ}
where xθ =

⊗θ
i=1H

θi |xi⟩, Mθ
B = {|βθ

1⟩ , . . . , |βθ
d⟩}, Mθ

C = {|γθ1⟩ , . . . , |γθd⟩}, and functions f, g such that
x = y = z in the figure below.

|ψ⟩

A B C

b c

Mθ Mθ
B Mθ

C

x

y = f(θ, b) z = g(θ, c)

θ

θ

θ ← {0, 1}λ

We only prove existence in this lecture, and leave optimality to the next lecture. This is easily achieved by
setting λ = 1, f = g = 0, and |ψ⟩ = |π8 ⟩A ⊗ |0⟩B ⊗ |0⟩C , where |θ⟩ denotes cos θ |0⟩ + sin θ |1⟩. This means
that regardless of θ, player B, C will always guess 0. In this case, regardless of θ = 0 or 1, we always have

Pr[x = 0] =

{
| ⟨0|π8 ⟩ |

2 = (cos2 π
8 )

2 if θ = 0

| ⟨+|π8 ⟩ |
2 = (cos2 π

8 )
2 if θ = 1
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CS 6832: Quantum Cryptography September 4, 2025

Lecture 4: Monogamy of Entanglement (Optimal Adversary)
Instructor: Nick Spooner Scribe: Lucas Sandleris

6 Introduction

Recall the game to portray monogamy of entanglement:

• Player A prepares a tripartite state |ψ⟩ABC , where registers A,B,C are arbitrary finite-dimensional
quantum systems. She sends register A to the referee, B to Player B, and C to Player C.

• The referee samples θ ∈ {0, 1} uniformly at random.

– If θ = 0, the referee measures A in the computational basis

M0 := {|0⟩, |1⟩}.

– If θ = 1, the referee measures A in the Hadamard basis

M1 := {|+⟩, |−⟩}.

This yields an outcome x ∈ {0, 1}n.

• Player B and Player C both receive θ.

– Player B measures register B in basis

Mθ
B := {|βθ

1⟩, . . . , |βθ
d⟩}

and obtains outcome b.

– Player C measures register C in basis

Mθ
C := {|γθ1⟩, . . . , |γθℓ ⟩}

and obtains outcome c.

• Player B and Player C output classical bits

y = f(θ, b), z = g(θ, c),

• The players win if y = z = x.

Any strategy will be modeled as
(
| ψ⟩ABC ,

(
Mθ

B ,M
θ
C

)
θ∈{0,1} , f, g

)
. What we will prove is that, at most,

the probability of winning is cos2 π
8 .

First, there’s some Linear Algebra background needed:
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1. SVD: every matrix M can be written as UΣV T , where U , V are unitary and Σ is diagonal. The entries
of Σ are the Singular Values of M , and the eigenvalues of M†M . If M is Hermitian, the singular
values equal the eigenvalues of M .

2. A matrix is Positive Semi-Definite (psd) if, for all |x⟩, ⟨x|M |x⟩ ≥ 0 (⇐⇒ all eigenvalues of M are
non-negative).

• Loewner ordering: A ≥ B iff A−B is psd

3. Dirac’s notation: ⟨ψ| = |ψ⟩† and ⟨u|v⟩ = |u⟩† |v⟩ = ⟨u| · |v⟩.

Now, with the proof:
For all θ ∈ {0, 1}, |ψ⟩ =

∑
x,b,c

αθ
x,b,c |xθ⟩ ⊗ |βθ

b ⟩ ⊗ |γθc ⟩.

Therefore:

Pr[win] = Eθ

∑
x,b,c

Pr[x, b, c] · 1[x = f(θ, b) = g(θ, c) ]

= Eθ

∑
x,b,c

∣∣αθ
x,b,c

∣∣2 · 1[x = f(θ, b) = g(θ, c) ]

= Eθ

∑
x,b,c

∣∣⟨xθ| ⟨βθ
b | ⟨γθc |ψ⟩

∣∣2 · 1[x = f(θ, b) = g(θ, c) ]

= ⟨ψ|

(
Eθ

∑
x,b,c

f(θ,b)=g(θ,c)=x

|xθ⟩⟨xθ| ⊗ |βθ
b ⟩⟨βθ

b | ⊗ |γθc ⟩⟨γθc |

)
|ψ⟩

= ⟨ψ|
(
Eθ Πθ

)
|ψ⟩

where Πθ :=
∑

x,b,c
f(θ,b)=g(θ,c)=x

|xθ⟩⟨xθ| ⊗ |βθ
b ⟩⟨βθ

b | ⊗ |γθc ⟩⟨γθc |.

Therefore, the maximal probability equals the largest eigenvalue of EθΠθ. But, as Πθ is a linear combination
of Hermitian matrices, it is Hermitian itself, and thus so is its expected value (as it is a linear combination
of Π0 and Π1, so the largest eigenvalue of EθΠθ equals its largest singular value.
For notation purposes, let Bθ

y =
∑

b,f(θ,b)=y

| βθ
b ⟩⟨βθ

b | and Cθ
z =

∑
c,g(θ,c)=z

| γθc ⟩⟨γθc |.

It follows that
Πθ =

∑
x
| xθ⟩⟨xθ | ⊗Bθ

x ⊗ Cθ
x is an orthogonal projector.

Recall that EθΠθ = 1
2 (Π0 +Π1).

Proposition 6.1. If Π0 and Π1 are projectors, then ||Π0 +Π1|| ≤ 1 + ||Π0Π1||.

Proof. Note that:

Π0 +Π1 =
(
Π0 Π1

)(Π0

Π1

)
= X†X for X =

(
Π0

Π1

)
.

=⇒ ∥Π0Π1∥ = ∥X†X∥ = ∥XX†∥.

But note that, for permutation matrix P :

XX† =

(
Π0 Π0Π1

Π1Π0 Π1

)
=

(
Π0 0
0 Π1

)
+ P †

(
0 Π0Π1

Π1Π0 0

)
P.
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Therefore we get, by triangle inequality,

∥XX†∥ ≤ 1 + ∥Π0Π1∥.

Now, note that
Π0 = |0⟩⟨0| ⊗B0

0 ⊗ C0
0 + |1⟩⟨1| ⊗B0

1 ⊗ C0
1 ,

Π1 = |+⟩⟨+| ⊗B1
0 ⊗ C1

0 + |−⟩⟨−| ⊗B1
1 ⊗ C1

1 .

From these, we define
Π̃0 :=

(
|0⟩⟨0| ⊗B0

0 + |1⟩⟨1| ⊗B0
1

)
AB
⊗ IC ,

Π̃1 :=
(
|+⟩⟨+| ⊗ C1

0 + |−⟩⟨−| ⊗ C1
1

)
AC
⊗ IB .

And from their definitions, it follows that

Π̃0 ≥ Π0, Π̃1 ≥ Π1.

Proposition 6.2 (Left as an exercise). If Π̃0 ≥ Π0 and Π̃1 ≥ Π1, then

∥Π̃0Π̃1∥ ≥ ∥Π0Π1∥.

As of now, we have EθΠθ = 1
2 (Π0 +Π1) ≤ 1

2 (1 + ||Π0Π1||) ≤ 1
2 (1 + ||Π̃0Π̃1||).

But note that, as Π0 and Π1 are projectors,

∥Π̃0Π̃1∥ =
√
∥Π̃0Π̃1Π̃0∥.

And we have that
Π̃0Π̃1Π̃0 =

∑
a,b,c

|a⟩⟨a|H|b⟩⟨b|H|c⟩⟨c| ⊗B0
aB

0
c ⊗ C1

b .

But also noting that

B0
aB

0
c =

{
B0

a, a = c,

0, a ̸= c.

we have that

Π̃0Π̃1Π̃0 =
∑
a,b

|a⟩⟨a|H|b⟩⟨b|H|a⟩⟨a|⊗B0
a⊗C1

b =
1

2

∑
a

| a⟩⟨a | ⊗B0
a⊗
∑
b

C1
b =

1

2

∑
a

| a⟩⟨a | ⊗B0
a⊗ I ≤ I/2.

Therefore, ||Π̃0Π̃1|| =
√
||Π̃0Π̃1Π̃0|| ≤ 1√

2
, which implies the final result that

EθΠθ ≤
1

2

(
1 +

1√
2

)
= cos2

π

8
,

as desired.
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