Homework 1

Due: September 26, 2025 at 11:59pm

CS 6832: Quantum Cryptography

Questions 2 and 3 of this problem set are based on the paper arXiv:1210.4359. You are encouraged to refer to it for guidance if you get stuck, but your answers must be in your own words.

1. Entanglement.

Let $|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. The Z (or computational) basis for a single qubit is $\{|0\rangle, |1\rangle\}$ and the X (or Hadamard) basis is $\{|+\rangle, |-\rangle\}$.

- (a) (2 Points) Prove $|\Phi^+\rangle$ is the only two-qubit state such that, when both qubits are measured in the same basis (either Z or X), the measurement outcomes are always equal.
- (b) (2 Points) Prove there is no three-qubit state $|\psi\rangle_{\mathsf{ABC}}$ such that, when A, B, and C are measured in the same basis (either Z or X), the measurement outcomes are always equal.
- (c) (2 Points) Let $|\psi\rangle_{\mathsf{ABC}}$ be a three-qubit state such that, when A and B are measured in the same basis (either Z or X), the measurement outcomes are always equal. Prove that the state can be written $|\psi\rangle_{\mathsf{ABC}} = |\Phi^+\rangle_{\mathsf{AB}} \otimes |\phi\rangle_{\mathsf{C}}$ for some $|\phi\rangle$.

2. Properties of the Operator Norm.

Given a Hilbert space \mathcal{H} , we denote the set of linear operators on that space as $\mathcal{L}(\mathcal{H})$. We denote the Schatten ∞ -norm (or the operator norm) as ||X||. The following is a useful fact about the operator norm of diagonal block matrices.

Fact 1. Let $X_1, X_2, \ldots, X_n \in \mathcal{L}(\mathcal{H})$ and X be the $n \times n$ diagonal block matrix

$$X = \begin{bmatrix} X_1 & 0 & \cdots & 0 \\ 0 & X_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & X_n \end{bmatrix}$$

Then $||X|| = \max_i ||X_i||$.

- (a) (1 Points) Prove that $X^{\dagger}X \geq Y^{\dagger}Y$ implies $Z^{\dagger}X^{\dagger}XZ \geq Z^{\dagger}Y^{\dagger}YZ$ for $X, Y, Z \in \mathcal{L}(\mathcal{H})$.
- (b) (2 Points) Let $X, Y \in \mathcal{L}(\mathcal{H})$ where $X^{\dagger}X \geq Y^{\dagger}Y$. Prove that $||XZ|| \geq ||YZ||$ for all $Z \in \mathcal{L}(\mathcal{H})$.
- (c) (3 Points) Let $\{P_i\}_{i=1}^n$ be orthogonal projectors (i.e., $P_i^2 = P_i$ and $P_i^{\dagger} = P_i$). Consider the block matrix P defined as

$$P = \begin{bmatrix} P_1 \\ P_2 \\ \vdots \\ P_n \end{bmatrix}$$

Prove that $\|\sum_{i=1}^{n} P_i\| = \|P^{\dagger}P\| = \|PP^{\dagger}\|.$

(d) **(4 Points)** Let (\mathbb{G}, \circ) be a group of order n. For this part, we think of the projectors P_i as being indexed by elements of \mathbb{G} , i.e., $\{P_i\}_{i=1}^n = \{P_i\}_{i \in \mathbb{G}}$. Show that $PP^{\dagger} = \sum_{k \in \mathbb{G}} D_k$, where for each $i, j, k \in \mathbb{G}$, the (i, j)-th block of D_k is

$$(D_k)_{ij} = \begin{cases} P_i P_j & \text{if } i \circ k = j \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Prove that for all k, $||D_k|| = \max_i ||P_i P_{i \circ k}||$. Conclude that $||\sum_i P_i|| \le \sum_k \max_i ||P_i P_{i \circ k}||$.

2

3. Monogamy of Entanglement.

In this problem, we will prove the optimal win probability for a λ -qubit monogamy of entanglement game. The game consists of Player A's measurement projectors $\{|x^{\theta}\rangle\langle x^{\theta}|\}_{x,\theta\in\{0,1\}^{\lambda}}$ (where $|x^{\theta}\rangle = H^{\theta_1}|x_1\rangle \otimes \ldots \otimes H^{\theta_{\lambda}}|x_{\lambda}\rangle$). A strategy $\mathcal S$ for this game consists of a tripartite state $|\psi\rangle_{\mathsf{ABC}}$ along with Player B and C's orthogonal projectors $\{B_y^{\theta}\}_{y,\theta\in\{0,1\}^{\lambda}}$ and $\{C_z^{\theta}\}_{z,\theta\in\{0,1\}^{\lambda}}$.

Our goal is to prove that for any $\lambda \in \mathbb{N} \setminus \{0\}$,

$$\max_{\mathcal{S}} \Pr[\mathcal{S} \text{ wins}] \le \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)^{\lambda}.$$

Recall from the lecture that for a given strategy S,

$$\Pr[\mathcal{S} \text{ wins}] = \frac{1}{2^{\lambda}} \sum_{\theta \in \{0,1\}^{\lambda}} \langle \psi | \Pi^{\theta} | \psi \rangle,$$

where $\Pi^{\theta} = \sum_{x \in \{0,1\}^{\lambda}} |x^{\theta}\rangle \langle x^{\theta}| \otimes B_x^{\theta} \otimes C_x^{\theta}$.

(a) (3 Points) Using (2d), show that

$$\max_{\mathcal{S}} \ \Pr[\mathcal{S} \ \text{wins}] \le \frac{1}{2^{\lambda}} \sum_{k \in \{0,1\}^{\lambda}} \max_{\theta \in \{0,1\}^{\lambda}} \|\Pi^{\theta}\Pi^{\theta \oplus k}\|$$

where $\theta \oplus k$ indicates bitwise xor between the λ -bit strings.

(b) **(4 Points)** Let $|x_k^{\theta}\rangle\langle x_k^{\theta}|_{\mathsf{A}} = \left(\bigotimes_{i:k_i=1} |x_i^{\theta_i}\rangle\langle x_i^{\theta_i}|_{\mathsf{A}_i}\right) \otimes \left(\bigotimes_{i:k_i=0} I_{\mathsf{A}_j}\right)$ be the projector given by "ignoring" the zero indices of $k \in \{0,1\}^{\lambda}$. For example, if $\lambda = 4$ then

$$|x_{0101}^{\theta}\rangle\langle x_{0101}^{\theta}| = I \otimes |x_{2}^{\theta_2}\rangle\langle x_{2}^{\theta_2}| \otimes I \otimes |x_{2}^{\theta_4}\rangle\langle x_{2}^{\theta_4}|$$

Note that $|x_k^{\theta}\rangle\!\langle x_k^{\theta}| \geq |x^{\theta}\rangle\!\langle x^{\theta}|$ for all $k \in \{0,1\}^{\lambda}$.

For $\theta, k \in \{0, 1\}^{\lambda}$, we define

$$\mathbf{B}_k^\theta = \sum_x \, |x_k^\theta \rangle\!\langle x_k^\theta| \otimes B_x^\theta \otimes I_\mathsf{C} \quad \text{ and } \quad \mathbf{C}_k^\theta = \sum_x \, |x_k^{\theta \oplus k} \rangle\!\langle x_k^{\theta \oplus k}| \otimes I_\mathsf{B} \otimes C_x^{\theta \oplus k}$$

Prove that $\|\Pi^{\theta}\Pi^{\theta\oplus k}\|^2 \leq \|\mathbf{B}_k^{\theta}\mathbf{C}_k^{\theta}\mathbf{B}_k^{\theta}\| = 2^{-|k|}$ where $|k| = |\{i : k_i \neq 0\}|$ is the Hamming weight of k.

(c) (2 Points) Using (3a) and (3b), show that $\max_{\mathcal{S}} \Pr[\mathcal{S} \text{ wins}] \leq \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right)^{\lambda}$.