CS6814 Homework 1: Interactive Proofs Date: Oct 31, 2024

Problem 1. (Importance of randomness and error) Prove that if a language \mathcal{L} has an interactive proof with a deterministic verifier, then $\mathcal{L} \in \mathsf{NP}$. Prove that if a language \mathcal{L} has an interactive proof with zero soundness error, then $\mathcal{L} \in \mathsf{NP}$.

Problem 2. (Sequential repetition) Suppose that \mathcal{L} has an interactive proof (P, V) with perfect completeness and soundness error 1/2. Let (P_t, V_t) be the *t*-fold sequential repetition of (P, V): the new prover P_t and the new verifier V_t respectively simulate the old prover P and old verifier V for t times one after the other, each time with fresh randomness; V_t accepts if and only if V accepts in all t repetitions. Prove that (P_t, V_t) is an interactive proof for \mathcal{L} with perfect completeness and soundness error 2^{-t} .

Problem 3. (Derandomised invertible matrices) Let \mathbb{F} be a prime field such that $10n \leq |\mathbb{F}| \leq \operatorname{poly}(n)$. Give interactive proofs for the language

$$\mathsf{INV}_{\mathbb{F}} \coloneqq \{ M \in \mathbb{F}^{n \times n} : \exists A \in \mathbb{F}^{n \times n} \text{ s.t. } MA = I \}$$

with perfect completeness, soundness error 1/2, where the verifier runs in time $\tilde{O}(n^2)$, and with each of the following additional properties:

- (a) O(n) total communication, or
- (b) where the verifier uses $O(\log n)$ random bits.

(Fun challenge problem: can we achieve both simultaneously? I don't know!)

Problem 4. (Multilinear arithmetisation) Prove that if there exists a polynomial-time computable arithmetisation A of 3-CNFs (i.e., a mapping of boolean formulas to arithmetic circuits) such that for all $x_1, \ldots, x_n \in \{0, 1\}, A(\phi)(x_1, \ldots, x_n) = 0$ if and only if $\phi(x_1, \ldots, x_n)$ is false, and $A(\phi)$ is multilinear for all ϕ , then coNP \subseteq BPP. You may assume that the underlying field \mathbb{F} is sufficiently large.

Prove that if, in addition, for all $x_1, \ldots, x_n \in \{0, 1\}$, $A(\phi)(x_1, \ldots, x_n) = 1$ if and only if $\phi(x_1, \ldots, x_n)$ is true, and the characteristic of \mathbb{F} is not 2, then there is a deterministic polynomial-time algorithm for #SAT.

Problem 5. (Error reduction)

- (a) Let $S \subseteq \{0,1\}^{\ell}$. Show that if $|S|/2^{\ell} \leq \frac{1}{3\ell}$, then for all $z_1, \ldots, z_{\ell} \in \{0,1\}^{\ell}$, $|\bigcup_i (S \oplus z_i)| \leq 2^{\ell}/3$, where $S \oplus z_i = \{s \oplus z_i : s \in S\}$. On the other hand, show that if $|S|/2^{\ell} \geq 2/3$, then there exist z_1, \ldots, z_{ℓ} such that $\bigcup_i (S \oplus z_i) = \{0,1\}^{\ell}$.
- (b) Denote by MA_1 the class of languages that have MA protocols with perfect completeness. Show that $BPP \subseteq MA_1$.
- (c) Show that $MA = MA_1$.
- (d) Show that $MA \subseteq AM$. (Hint: make the soundness error *very* small.)